
 

 

Generating and Measuring Communications Signals with the Proteus AWT 

Introduction  

Creating and analyzing signals with Proteus and MATLAB takes a few simple steps. In this application 

note we show how to generate and receive a WLAN beacon signal at 2.4GHz in the instruments’ first 

Nyquist Zone. The code can easily be modified to create a signal in the second Nyquist zone, all the way 

up to the WiFi-6 frequency extension of 7.125GHz. 

 

Configure and Create the Baseband Signal 

The beacon frame is a type of management frame. It identifies a basic service set (BSS) formed by a 

number of 802.11 devices. The access point periodically transmits the beacon frame to establish and 

maintain the network. The beacon frame consists of a MAC header, a beacon frame body and a valid 

frame check sequence (FCS). The beacon frame body contains the information fields which allows 

stations to associate with the network. A WLAN beacon frame is created using the wlanMACFrame 

function. We use the helper function helperGenerateBeaconFrame and we configure for non-high 

throughput operation. The beacon frame is encoded and modulated using the 

wlanWaveformGenerator function to create a baseband beacon packet.  

SSID = 'TABOR_AWG'; % Network SSID 

beaconInterval = 1; % In Time units (TU) 

band = 2.4;         % Band, 5 or 2.4 GHz 

chNum = 3;          % Channel number, corresponds to 2422MHz 

Fc = 2.422E+09;     % The center frequency of CH 3 

 

% Generate Beacon frame 

[mpduBits,fc] = helperGenerateBeaconFrame(chNum, band, beaconInterval, SSID); 

cfgNonHT = wlanNonHTConfig;              % Create a wlanNonHTConfig object 

cfgNonHT.PSDULength = numel(mpduBits)/8; % Set the PSDU length in bits 

waveform = wlanWaveformGenerator(mpduBits, cfgNonHT, 'IdleTime', 

beaconInterval*1024e-6); 
 

5G Band operation  

band = 5;             % Band, 5 or 2.4 GHz 
chNum = 140;          % Channel number, corresponds to 5700MHz 
Fc = 5.7E+09; 

 

 



 

 

Plotting waveform yields the following result: 

 

 

Interpolate to AWG Clock 

The sample rate is 20MS/s, and this directly equates to 20MHz of signal Bandwidth. For first Nyquist 

operation we can set the instrument’s sample rate to 9GS/s. In the example we define Fs as the sample 

rate of the baseband signal and sclk as the sample rate of the instruments sample clock. 

%% re-sample to sclk of AWG 
Fs = wlanSampleRate(cfgNonHT);           % Get the input sampling rate 
sclk = 9e9; 
FsNew = sclk/Fs; 
waveformReSamp = IqIdealInterpolationWifi (waveform, FsNew); 

  

Modulate onto carrier 

First, we create the carrier wave array; 
 
 % Carrier Waveform creation 
carrierWave = 0:(length(waveformReSamp) - 1); 
carrierWave = carrierWave ./ sclk; 

 
If we want to generate a signal in the 5G-band, we will generate the signal in the second Nyquist zone.  
Referring to the figure bellow - Fc would calculate as follows Fc = sclk - Fc; or 3.3GHz in the first 
Nyquist and 5.7GHz in the second Nyquist. A high pass filter could be used to attenuate the signal at 
3.3GHz.  
 
% second Nyquist band generation 
if Fc > sclk / 2 
    Fc = sclk - Fc; 
    % one way to reverse the spectrum is changing the sign of the time so 
    % carrier rotation in the complex plane goes in the opposite direction 
    carrierWave = -carrierWave; 
end 

 



 

 

Finally, the following code creates the carrier and modulates the interpolated baseband signal on to the 

carrier Fc. 

%% Modulate onto carrier 
Fc = round(Fc / (sclk / length(carrierWave))) * sclk / length(carrierWave); 
% Carrier generation 
carrierWave = exp(1i * 2 * pi * Fc * carrierWave); 
% Complex carrier multiplied by complex baseband waveform (IQ modulation) 
%Modulated signal is just the real part of the complex product 
waveformReSamp = real(waveformReSamp .* carrierWave); 
waveformReSamp = waveformReSamp.'; 

 

Next, we format and scale the waveform in preparation for download; 
 
waveformReSampTrunk = waveformReSamp(1:10240000); %truncate - divisible by 64 
bits=8; 
dacSignal = ampScale(bits, waveformReSampTrunk);  

         

The signal dacSignal is now ready to be downloaded to the instrument. 

res = inst.SendScpi('*RST'); % Reset Instrument 
res = inst.SendScpi(':FREQ:RAST 9E9'); % Set SLCK 
res = inst.SendScpi('INST:CHAN 1'); % Enable channel 1 
res = inst.SendScpi(':TRAC:DEF 1,10240000'); % Define a trace 

res = inst.WriteBinaryData(':TRAC:DATA 0,#', dacSignal); 
res = inst.SendScpi(':TRAC:SEL 1'); 
res = inst.SendScpi(':SOUR:FUNC:SEG 1'); 
res = inst.SendScpi(':OUTP ON'); 

 

Digitize the Waveform 

We will digitize the waveform using the Nyquist Zone principles discussed earlier. We do this as the 

maximum sample clock frequency of the Proteus Digitizer is 5.4GS/s. This means the that 2.7GHz is the 

theoretical frequency limit within the first Nyquist Zone. Our Transmit signal is 2.442GHz, while it falls 

within the theoretical range, at 2.7GHz you would only get 2 sample points per period. 2.442GHz offers 

a few more sample points per period more. A more logical approach, and one that would yield in 

improved signal fidelity, would be to set the sample clock to 2GS/s. 



 

 

 

 

Refering to the above figure – when we sample a 2.4GHz signal with a 2GS/s clock (FADC or SCLK ) we will 

see an undersampled image of the signal in the first Nyquist Zone or at 400MHz (2.4GHz-2GS/s). 

The following code sets the ADC up for an acquisition. 

sampleRateADC = 2e9; 

memoryAlloc = 10240000/4 % Just capture 25% of the waveform or use a trigger 
readLen = 10240000/4; 

readSize = uint64(readLen); 
readOffset = uint64(0); 
netArray = NET.createArray('System.UInt16', readLen); 

rc = inst.AllocAdcReservedSpace(memoryAlloc); 
rc = inst.SetAdcDualChanMode(1); % Turn on ADC dual-channels mode (state = 1) 
rc = inst.SetAdcSamplingRate(sampleRateADC); 
rc = inst.SetAdcCaptureSize(memoryAlloc); 

rc = inst.SetAdcCaptureOffset(0); 

 

The following code executes the acquisition and stores it in the memory we previously allocated. 
 

status = inst.ReadAdcCaptureDoneStatus(); 
for i = 1 : 2500  % Wait till the capture completes 

 
    if status ~= 0 
        break; 
    end 
    status = inst.ReadAdcCaptureDoneStatus(); 
end 
rc = inst.ReadAdcChanData(chanIndex, readSize, readOffset, netArray); 
samples = int16(netArray); 

 

This results in 2.5 million samples being stored in the int16 variable samples. With our sample clock set 
to 2GS/s this is 1.25ms of captured data. 
 



 

 

Detecting the Pulse 
 
In the simple example of acquisition explained above, we randomly trigger the acquisition and set a 
capture time that has a high probability of capturing the pulse. Using one of the many trigger functions 
of Proteus we could use an external trigger and set a capture time that is equal to the pulse length, or 
trigger on the pulses own first rising edge and gain set the capture time to equal the pulse length. 
 
Our capture is stored as a 16bit integer number. The peak values are < 216 and the minimum values are 
just above zero so one of the first things we should do is normalize samples so the waveform is 
oscillating around zero.  An easy quick way to do this is to take the mean value of samples and subtract 
it, effectively reducing the inherent DC level and preparing it for the measurement. 
 
meanSig = mean(samples); 
dataReadTimeDC=samples-meanSig; 

 

Making a Measurement 
 
Now the signal is ready to perform measurements. In the following example I’ve created 4 plots. The 
first upper left quadrant is the time domain display of the base acquisition, then in the second upper 
quadrant using a simple software trigger I capture only the pulse itself. The lower plots are broad 
spectrum 0-1GHz and tuned spectrum with a center frequency of 442MHz. 
 

 

 
 

The above plots also have random noise added and I used a filter to eliminate any spurious signals. More 
measurements are possible using the rich signal processing toolset within MATLAB including modulation 
quality, adjacent channel power and CCDF. 
 

 



 

 

Conclusion  
 
The unique architecture of an AWT allows for wideband signal generation and analysis. The Proteus 
system uses the latest ADC’s and DAC’s combined with a powerful FPGA that we can also utilize for 
further signal processing. 
 

 
 
Finally, just for fun we can put an antenna on the differential output of the AWT and see if we can pick-
up the beacon signal! 
 

 
 
The code examples can be found on our Github site – please provide us with your Github name and we 
will authorize you as a collaborator. 


