

Proteus AWT Pulse
Counter –

Application Note
Rev. 1.0

Proteus AWT Pulse Counter - Application Note Rev. 1.0

Confidential | 2

Warranty Statement
Products sold by Tabor Electronics Ltd. are warranted to be free from defects in workmanship or materials.
Tabor Electronics Ltd. will, at its option, either repair or replace any hardware products which prove to be
defective during the warranty period. You are a valued customer. Our mission is to make any necessary
repairs in a reliable and timely manner.

Duration of Warranty
The warranty period for this Tabor Electronics Ltd. hardware is one year, except software and firmware
products designed for use with Tabor Electronics Ltd. Hardware is warranted not to fail to execute its
programming instructions due to defect in materials or workmanship for a period of ninety (90) days from
the date of delivery to the initial end user.

Return of Product
Authorization is required from Tabor Electronics before you send us your product for service or
calibration. Call your nearest Tabor Electronics support facility. A list is located on the last page of this
manual. If you are unsure where to call, contact Tabor Electronics Ltd. Tel Hanan, Israel at 972-4-821-3393
or via fax at 972-4-821-3388. We can be reached at: support@tabor.co.il

Limitation of Warranty
Tabor Electronics Ltd. shall be released from all obligations under this warranty in the event repairs or
modifications are made by persons other than authorized Tabor Electronics service personnel or without
the written consent of Tabor Electronics.
Tabor Electronics Ltd. expressly disclaims any liability to its customers, dealers and representatives and to
users of its product, and to any other person or persons, for special or consequential damages of any kind
and from any cause whatsoever arising out of or in any way connected with the manufacture, sale,
handling, repair, maintenance, replacement or use of said products. Representations and warranties
made by any person including dealers and representatives of Tabor Electronics Ltd., which are inconsistent
or in conflict with the terms of this warranty (including but not limited to the limitations of the liability of
Tabor Electronics Ltd. as set forth above), shall not be binding upon Tabor Electronics Ltd. unless reduced
to writing and approved by an officer of Tabor Electronics Ltd. This document may contain flaws,
omissions, or typesetting errors. No warranty is granted nor liability assumed in relation thereto. The
information contained herein is periodically updated and changes will be incorporated into subsequent
editions. If you have encountered an error, please notify us at support@taborelec.com. All specifications
are subject to change without prior notice. Except as stated above, Tabor Electronics Ltd. makes no
warranty, express or implied (either in fact or by operation of law), statutory or otherwise; and except to
the extent stated above, Tabor Electronics Ltd. shall have no liability under any warranty, express or
implied (either in fact or by operation of law), statutory or otherwise.

Proprietary Notice
This document and the technical data herein disclosed, are proprietary to Tabor Electronics, and shall not,
without express written permission of Tabor Electronics, be used, in whole or in part to solicit quotations
from a competitive source or used for manufacture by anyone other than Tabor Electronics. The
information herein has been developed at private expense and may only be used for operation and
maintenance reference purposes or for purposes of engineering evaluation and incorporation into
technical specifications and other documents, which specify procurement of products from Tabor
Electronics.

Proteus AWT Pulse Counter - Application Note Rev. 1.0

Confidential | 3

Document Revision History

Table 1.1 Document Revision History

Revision Date Description Author

1.0 9-Apr-2024 • Original release. Saeed Ghanem

Acronyms & Abbreviations

Table 1.2 Acronyms & Abbreviations

Acronym Description

µs or us Microseconds

ADC Analog to Digital Converter

AM Amplitude Modulation

ASIC Application-Specific Integrated Circuit

ATE Automatic Test Equipment

AWG Arbitrary Waveform Generators

AWT Arbitrary Waveform Transceiver

BNC Bayonet Neill–Concelm (coax connector)

BW Bandwidth

CW Carrier Wave

DAC Digital to Analog Converter

dBc dB/carrier. The power ratio of a signal to a carrier signal, expressed in decibels

dBm Decibel-Milliwatts. E.g., 0 dBm equals 1.0 mW.

DDC Digital Down-Converter

DHCP Dynamic Host Configuration Protocol

DSO Digital Storage Oscilloscope

DUC Digital Up-Converter

ENoB Effective Number of Bits

ESD Electrostatic Discharge

EVM Error Vector Magnitude

FPGA Field-Programmable Gate Arrays

GHz Gigahertz

GPIB General Purpose Interface Bus

GS/s Giga Samples per Second

GUI Graphical User Interface

HP Horizontal Pitch (PXIe module horizontal width, 1 HP = 5.08mm)

Hz Hertz

IF Intermediate Frequency

I/O Input / Output

IP Internet Protocol

IQ In-phase Quadrature

IVI Interchangeable Virtual Instrument

JSON JavaScript Object Notation

kHz Kilohertz

Proteus AWT Pulse Counter - Application Note Rev. 1.0

Confidential | 4

Acronym Description

LCD Liquid Crystal Display

LO Local Oscillator

MAC Media Access Control (address)

MDR Mini D Ribbon (connector)

MHz Megahertz

MIMO Multiple-Input Multiple-Output

ms Milliseconds

NCO Numerically Controlled Oscillator

ns Nanoseconds

PC Personal Computer

PCAP Projected Capacitive Touch Panel

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PRBS Pseudorandom Binary Sequence

PRI Pulse Repetition Interval

PXI PCI eXtension for Instrumentation

PXIe PCI Express eXtension for Instrumentation

QC Quantum Computing

Qubits Quantum bits

RADAR Radio Detection And Ranging

R&D Research & Development

RF Radio Frequency

RT-DSO Real-Time Digital Oscilloscope

s Seconds

SA Spectrum Analyzer

SCPI Standard Commands for Programmable Instruments

SFDR Spurious Free Dynamic Range

SFP Software Front Panel

SMA Subminiature version A connector

SMP Subminiature Push-on connector

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

TFT Thin Film Transistor

T&M Test and Measurement

TPS Test Program Sets

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

VCP Virtual COM Port

Vdc Volts, Direct Current

V p-p Volts, Peak-to-Peak

VSA Vector Signal Analyzer

VSG Vector Signal Generator

WDS Wave Design Studio

Proteus AWT Pulse Counter - Application Note Rev. 1.0

Confidential | 5

Contents

Document Revision History ...3
Acronyms & Abbreviations ..3
Contents ...5
Figures ..5
Tables ...5
1 About this Application Note ...6

1.1 Related Documentation ... 6
2 Pulse Counting with Proteus AWT ..7

2.1 Introduction .. 7
2.2 Pulse Counter Operation .. 7
2.3 Pulse Counter in Proteus .. 7

 Number of Pulses Equation .. 7
 How it Works? ... 8

3 Pulse Counter Setup ..9
4 Python Sample Script ... 10

Figures

Figure 2.1 Proteus Pulse Counter ... 8
Figure 3.1 PXE6410 6 Slot PXIe Chassis with Proteus PXIe Module P9484M AWT Pulse Counter Setup9
Figure 4.1 Python Script Attachment .. 10
Figure 4.2 SCPI Commands for Pulse Counter .. 11

Tables

Table 1.1 Document Revision History ... 3
Table 1.2 Acronyms & Abbreviations .. 3

Proteus AWT Pulse Counter - Application Note Rev. 1.0

Confidential | 6

1 About this Application Note
This application note explains how to use the Proteus AWT pulse counter and provides an example script.

1.1 Related Documentation

• Proteus Series Arbitrary Waveform Transceiver Programming Manual

• Proteus Module User Manual

• PXE6410 User Manual

Proteus AWT Pulse Counter - Application Note Rev. 1.0

Confidential | 7

2 Pulse Counting with Proteus AWT

2.1 Introduction

A pulse counter is a device or a circuit that counts the number of pulses it receives over time. In electronic
and digital systems, pulses are typically short-duration voltage changes that represent digital signals. The
pulse counter is commonly used in various applications, including measuring the frequency of a signal,
counting events, monitoring rotations in machinery, or tracking the number of occurrences of a specific
event.

2.2 Pulse Counter Operation

The pulse counter begins its operation by receiving an input signal. This signal consists of pulses, which
could be generated by various sources like sensors, switches, or other electronic devices. The pulse
counter has a mechanism to detect the rising or falling edges of the input signal, which typically represent
the beginning or end of a pulse. This detection is crucial for accurately counting pulses. Once a pulse is
detected, the pulse counter increments the counter by one. The counter keeps track of the total number
of pulses received since the counting process started. The counted value may be displayed on a digital
display, sent to a microcontroller, or stored for further analysis. In some cases, the pulse counter may
have additional features like resetting the count or triggering external events based on a predefined count
threshold.

2.3 Pulse Counter in Proteus

The Proteus AWT provides a pulse counter with the following options.
1. “the Pulse-counter Trigger”: INT/EXT
2. “Pulse-counter window type”: FIX/GATE
3. “the Fixed window width”. The range of the window width is: 12.5[ns] to 15[s].

The maximum number of pulses is 232 − 1 = 4294967295 .].

 Number of Pulses Equation

• N.P= Number of Pulses

• TW=Time Window

• T=1 Pulse Cycle

• F= Frequency

𝑁. 𝑃 =
 𝑇𝑊

𝑇
= 𝑇𝑊 ∗ 𝐹

You shall use the SCPI commands to operate the pulse counter.

Proteus AWT Pulse Counter - Application Note Rev. 1.0

Confidential | 8

 How it Works?

A square signal is received at the input of the ADC. The signal is converted to digital data of 12 bits and is
sent to the FPGA. The FPGA makes a comparison between the data and a fixed threshold value. Every time
that the received data is higher than the fixed value the FPGA increases the counter by 1. Once the
“window width” time is elapsed, the FPGA sends a response with the counted number of pulses.
The flow chart below depicts the pulse counter in the Proteus.

Figure 2.1 Proteus Pulse Counter

Proteus AWT Pulse Counter - Application Note Rev. 1.0

Confidential | 9

3 Pulse Counter Setup
To define a pulse counter in the Proteus AWT, you need to send a couple of SCPI commands to the Proteus.
The following picture shows the pulse counter setup :

Figure 3.1 PXE6410 6 Slot PXIe Chassis with Proteus PXIe Module P9484M AWT Pulse Counter Setup

1. A square waveform from a function generator is connected to the input of the Proteus ADC (CH1
or CH2).

2. Connect your control PC to the Proteus.
3. Send the next python sample script to get your pulse number.

Proteus AWT Pulse Counter - Application Note Rev. 1.0

Confidential | 10

4 Python Sample Script
The Python script is provided as an attachment.

Note

You should open the PDF file using the free Adobe reader. It can be downloaded from
https://get.adobe.com/reader/. As an alternative, you can also download the script from
the Tabor download site at https://www.taborelec.com/Downloads.

1. Click the “paper clip” icon in the attachment pane.
2. Right-click the file and select “Save Attachment…” to download the file.

Figure 4.1 Python Script Attachment

The SCPI commands used in the partial Python script is using the Jupyter Notebook:

https://get.adobe.com/reader/
https://www.taborelec.com/Downloads

Proteus AWT Pulse Counter - Application Note Rev. 1.0

Confidential | 11

Figure 4.2 SCPI Commands for Pulse Counter

Note

To get the number of pulses you shall wait until the time window has elapsed.

	Proteus AWT Pulse Counter –Application Note
	Document Revision History
	Acronyms & Abbreviations
	Contents
	Figures
	Tables
	1 About this Application Note
	1.1 Related Documentation

	2 Pulse Counting with Proteus AWT
	2.1 Introduction
	2.2 Pulse Counter Operation
	2.3 Pulse Counter in Proteus
	2.3.1 Number of Pulses Equation
	2.3.2 How it Works?

	3 Pulse Counter Setup
	4 Python Sample Script

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "00020e34",
 "metadata": {},
 "outputs": [],
 "source": [
 "# Import required Libraries\n",
 "import os\n",
 "import sys\n",
 "import tempfile\n",
 "import webbrowser\n",
 "srcpath = os.path.realpath('SourceFiles')\n",
 "sys.path.append(srcpath)\n",
 "from teproteus import TEProteusAdmin as TepAdmin\n",
 "from teproteus import TEProteusInst as TepInst\n",
 "from teproteus_functions_v3 import connect\n",
 "from teproteus_functions_v3 import disconnect\n",
 "from teproteus_functions_v3 import set_lib_dir_path\n",
 "from teproteus_functions_v3 import get_cpatured_header\n",
 "from teproteus_functions_v3 import gauss_env\n",
 "from teproteus_functions_v3 import iq_kernel\n",
 "from teproteus_functions_v3 import pack_kernel_data\n",
 "from teproteus import TEProteusAdmin, TEProteusInst\n",
 "from tevisainst import TEVisaInst\n",
 "#matplotlib notebook\n",
 "import numpy as np\n",
 "import time\n",
 "import ipywidgets as widgets\n",
 "from IPython.core.debugger import set_trace\n",
 "from scipy.signal import chirp, sweep_poly\n",
 "import matplotlib.pyplot as plt\n",
 "plt.style.use('ggplot')\n",
 "from scipy import signal\n",
 "import math\n",
 "import pdb"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "2d20b266",
 "metadata": {},
 "outputs": [],
 "source": [
 "# Connect to instrument\n",
 "connection = 'LAN' #input (\"Do you wish to connect via LAN/PXI/LOCAL/USB \")\n",
 "if connection == 'PXI': \n",
 " # not setting this command means DLL are taken from SYS32\n",
 " #set_lib_dir_path(r'D:\\Projects\\ProteusAwg_Anabelle\\x64\\Debug') \n",
 " # for service connection enter instrument IP\n",
 " # for PXI DLL connection enter the module slot number with Auto=False\n",
 " # when Auto=True the lowest module will be connected\n",
 " inst=connect(\"2\",Auto=False)\n",
 " \n",
 "elif connection == 'LAN':\n",
 " proteus_addr = 'TCPIP::192.168.0.129::5025::SOCKET'\n",
 " try:\n",
 " inst = TEVisaInst(proteus_addr)\n",
 " except TEVisaInst.Error as ex1:\n",
 " print('Couldn\\'t connect to \\'%s\\', exiting now...' % proteus_addr)\n",
 " sys.exit()\n",
 " \n",
 "elif connection == 'USB':\n",
 " proteus_addr = 'USB0::0x2A8D::0x900E::MY55490134::INSTR'\n",
 " try:\n",
 " inst = TEVisaInst(proteus_addr)\n",
 " except TEVisaInst.Error as ex1:\n",
 " print('Couldn\\'t connect to \\'%s\\', exiting now...' % proteus_addr)\n",
 " sys.exit()\n",
 " \n",
 "elif connection == 'LOCAL':\n",
 " proteus_addr = 'TCPIP::127.0.0.1::5025::SOCKET'\n",
 " try:\n",
 " inst = TEVisaInst(proteus_addr)\n",
 " except TEVisaInst.Error as ex1:\n",
 " print('Couldn\\'t connect to \\'%s\\', exiting now...' % proteus_addr)\n",
 " sys.exit()\n",
 " \n",
 "else:\n",
 " print(\"Please select the conection method first\")\n",
 "# Get the instrument's *IDN\n",
 "resp = inst.send_scpi_query('*IDN?')\n",
 "print('Connected to: ' + resp)\n",
 "inst.default_paranoia_level = 2\n"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "25294715",
 "metadata": {},
 "outputs": [],
 "source": [
 "# Get the model:\n",
 "model_name = inst.send_scpi_query('SYST:INF:MODel?')\n",
 "print('Model: {0} '.format(model_name))\n",
 "\n",
 "# Get model dependant parameters:\n",
 "if model_name.startswith('P948'):\n",
 " bpp = 2\n",
 " max_dac = 65535\n",
 " wpt_type = np.uint16\n",
 " offset_factor = 1\n",
 "elif model_name.startswith('P908'):\n",
 " bpp = 1\n",
 " max_dac = 255\n",
 " wpt_type = np.uint8\n",
 " offset_factor = 1\n",
 "else:\n",
 " bpp = 2\n",
 " max_dac = 65535\n",
 " wpt_type = np.uint16\n",
 " offset_factor = 2\n",
 " \n",
 "half_dac = max_dac / 2.0 \n",
 "# Get the DAC mode (8 bits or 16 bits)\n",
 "\n",
 "resp = inst.send_scpi_query(':SYST:INF:DAC?')\n",
 "if resp == 'M0': \n",
 " dac_mode=16 \n",
 "else: dac_mode=8\n",
 " \n",
 "print('DAC {0} bits'.format(dac_mode))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "17b19f8b",
 "metadata": {},
 "outputs": [],
 "source": [
 "# Several initializations ..\n",
 "inst.send_scpi_cmd('*CLS; *RST')\n",
 "#proteus.send_scpi_cmd(':INST:CHAN 2')\n",
 "inst.send_scpi_cmd(':TRAC:DEL:ALL') # Delete all segments of the programmable channel's DDR.\n",
 "resp = inst.send_scpi_query(':SYST:ERR?')\n",
 "print(resp)\n",
 "# Get number of channels\n",
 "num_channels = inst.send_scpi_query(\":INST:CHAN? MAX\")\n",
 "print(\"Number of channels: \" + num_channels)\n",
 "#num_channels = int(resp)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "ff7272a6",
 "metadata": {},
 "outputs": [],
 "source": [
 "# Build SQUARE waveforms\n",
 "\n",
 "\n",
 "# Build waveforms\n",
 "seglen = 1024\n",
 "cyclelen = seglen\n",
 "ncycles = seglen / cyclelen\n",
 "waves = [None for _ in range(3)]\n",
 "# square wave\n",
 "x = np.linspace(start=0, stop=seglen, num=seglen, endpoint=False)\n",
 "y = np.fmod(x, cyclelen)\n",
 "y = (y <= cyclelen / 2) * max_dac\n",
 "y = np.round(y)\n",
 "y = np.clip(y, 0, max_dac)\n",
 "waves[2] = y.astype(wpt_type)\n",
 "plt.plot(x,y)\n",
 "print(\"************* WAVEFORM*****************\")\n",
 "# Download square wave to channel 1\n",
 "for ii in range(1):\n",
 " ichan = ii\n",
 " channb = ichan + 1\n",
 " segnum = ii +3\n",
 " wav = waves[2]\n",
 " print('Download wave to segment {} of channel {}'.format(segnum, channb)) \n",
 " # Select channel\n",
 " inst.send_scpi_cmd(':INST:CHAN {}'.format(channb)) \n",
 " # Define segment\n",
 " inst.send_scpi_cmd(':TRAC:DEF {},{}'.format(segnum, seglen))\n",
 " # Select the segment\n",
 " inst.send_scpi_cmd(':TRAC:SEL {}'.format(segnum))\n",
 "# proteus.send_scpi_cmd(':VOLT:OFFS 0.2')\n",
 "# proteus.send_scpi_cmd(':VOLT 0.5')\n",
 " # Increase the timeout before writing binary-data:\n",
 " inst.timeout = 30000 \n",
 " # Select the segment\n",
 " cmd = ':TRAC:SEL {0}'.format(segnum)\n",
 " inst.send_scpi_cmd(cmd) \n",
 " # Send the binary-data:\n",
 " inst.write_binary_data(':TRAC:DATA', wav)\n",
 " resp = inst.send_scpi_query(':SYST:ERR?')\n",
 " resp = resp.rstrip()\n",
 " if not resp.startswith('0'):\n",
 " print('ERROR: \"{}\" after writing binary values'.format(resp))\n",
 " # Play the specified segment at the selected channel:\n",
 " cmd = ':SOUR:FUNC:MODE:SEGM {}'.format(segnum)\n",
 " inst.send_scpi_cmd(cmd)\n",
 " # Turn on the output of the selected channel:\n",
 " inst.send_scpi_cmd(':OUTP ON') \n",
 " resp = inst.send_scpi_query(':SYST:ERR?')\n",
 " print(resp)\n",
 "print()\n"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "260a1c60",
 "metadata": {},
 "outputs": [],
 "source": [
 "#Setup digitizer\n",
 "#stop acquisition:\n",
 "inst.send_scpi_cmd(':DIG:INIT OFF')\n",
 "\n",
 "#Set CH1 as the active channel:\n",
 "inst.send_scpi_cmd(':DIG:CHAN CH1')\n",
 "\n",
 "#Trigger from CH1:\n",
 "inst.send_scpi_cmd(':DIG:TRIG:SOUR CH1')\n",
 "\n",
 "#Enable acquisition for the active channel:\n",
 "inst.send_scpi_cmd(':DIG:CHAN:STAT ENAB') \n",
 "\n",
 "#Sets LEV1 as the trigger threshold. Slope setting will set the positive and negative edge: \n",
 "inst.send_scpi_cmd(':DIG:TRIG:TYPE EDGE')\n",
 "\n",
 "#\"Define the parameters of the pulse-counter of the digitizer(source & width):\n",
 "inst.send_scpi_cmd(':DIG:PULS INT,FIX,0.01') \n",
 "\n",
 "#Begin acquisition:\n",
 "inst.send_scpi_cmd(':DIG:INIT ON')\n",
 "\n",
 "#Force a trigger event for the digitizer:\n",
 "inst.send_scpi_cmd(':DIG:PULS:TRIG:IMM')"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "9d0f3b8e",
 "metadata": {},
 "outputs": [],
 "source": [
 "# Get number of pulses\n",
 "num_pulses = inst.send_scpi_query(\":DIG:PULS:COUN?\")\n",
 "print(\"Number of PULSES: \" + num_pulses)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "766ef5c3",
 "metadata": {},
 "outputs": [],
 "source": []
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "b5cf2a6f",
 "metadata": {},
 "outputs": [],
 "source": []
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.11.5"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

